Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenuto archiviato il 2024-06-18

Cosmic ray acceleration, magnetic field and radiation hydrodynamics

Obiettivo

Diffusive shock acceleration is widely acknowledged as the most likely source of cosmic rays and high energy particles. The basic macroscopic theory of how cosmic rays gain energy during multiple shock crossings is well known, but the microphysics of the interaction between cosmic rays (CR) and the MHD background fluid remained poorly understood before the recent discovery of a new non-resonant instability by which the CR precursor could greatly amplify the ambient magnetic field. The aims of the project are: 1) to develop the first self-consistent non-linear simulation of the CR/MHD interaction; to calculate the magnitude of the saturated magnetic field and the maximum energy to which CR are accelerated. We will characterise the structure of the amplified magnetic field and compare it with x-ray observations of the time-evolving outer shock of supernova remnants (SNR). We will investigate the effect of various orientations of the shock relative to the ambient magnetic field, the effect of non-diffusive transport on the energy spectrum and CR escape from the SNR, and how these match observation. 2) to extend the simulation to relativistic shocks as found in gamma-ray bursts (GRB) and active galactic nuclei (AGN); to establish whether the non-resonant instability operates effectively at relativistic shock velocities, whether it explains the large magnetic field found in GRB, and determine the maximum CR energy achieved by relativistic shocks. 3) to investigate high density shocks in GRB, x-ray flashes (XRF) and supernovae (SN) where radiative processes, pair production and other particle/photon and particle/particle interactions are important. We shall investigate CR acceleration on SN shock breakout and very young SNR as a possible source of very high energy CR.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Invito a presentare proposte

ERC-2009-AdG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

ERC-AG - ERC Advanced Grant

Istituzione ospitante

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Contributo UE
€ 900 024,00
Indirizzo
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Regno Unito

Mostra sulla mappa

Regione
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
Nessun dato

Beneficiari (1)

OSZAR »