Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

NextGeneration of Battery Management Systems to increase Interoperability, bridge the Gap between 1st and SL-BESS, Extend Adaptability and emPower battery value chains.

Project description

Advanced Battery Management Systems for enhanced interoperability

Batteries used in automotive and energy storage industries play a pivotal role in transitioning towards clean energy. However, the current Battery Management System (BMS) used in Flexible Lithium-ion Batteries (FLBs) lacks interoperability features, leading to a time-consuming, expensive, and non-standardised reconfiguration process for Small Li-Ion Rechargeable Batteries (SLBs). Consequently, repurposing FLBs for SLB applications, such as energy storage systems (ESS), poses significant challenges. Addressing this issue, the EU-funded BIG LEAP project aims to develop solutions for SLBs’ BMS and its reconfiguration process. The project will introduce a new three-layer BMS architecture emphasising interoperability, safety, and reliability, alongside an adaptable ESS design. Furthermore, the project seeks to optimise the battery reconfiguration process, making it cost-effective, faster, and standardised.

Objective

Batteries have been identified as an important technology to guide the clean-energy transition. Its presence in the automotive and energy storage industry is well-established and forecasts show its incoming market uptake. However, the current BMS of FLBs lack interoperability features, resulting in a time-consuming, expensive, and non-standardized reconfiguration process for SLB adaptation. These drawbacks complicate FLB repurposing for SLB applications, like ESS.
The BIG LEAP project focuses on developing solutions for the SLBs BMS and its reconfiguration process. Technology breakthroughs will be made in its BMS, as a new three-layer architecture will be designed to ensure interoperability, safety, and reliability. It will be complemented with an adaptable ESS design to ensure BMS integration and expand the SLB's potential applications. Additionally, the BIG LEAP project intends to optimize the battery reconfiguration process by making it cost-effective, faster, and standardized.
The methodology for the development of these innovations includes the collection of EV, maritime E-Vessel, and ESS batteries that will be dismantled and the data collected will serve as the basis for the BMS architecture development. It will contain adaptable SoX algorithms for accurate battery measurement, a DT for real-time monitoring, and a standardization roadmap. The new BMS will be integrated into the batteries, alongside the ESS and will be tested in three demo sites. Two physical demos will be in Paris and Prague, and a virtual demo will be in Morocco. They aim to validate the novel BMS and ESS, proving their optimization and interoperability.
The BIG LEAP innovation includes a multidisciplinary consortium, a strong business case, and an Environmental Impact assessment. All with the intention of accelerating its market uptake with a cost-effective solution, positively impacting the European economy through the battery value chain and tracing its sustainable benefits.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Coordinator

BRUSSELS RESEARCH AND INNOVATION CENTER FOR GREEN TECHNOLOGIES
Net EU contribution
€ 1 121 250,00
Address
LAMBROEKSTRAAT 5 A
1831 Diegem
Belgium

See on map

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Halle-Vilvoorde
Activity type
Research Organisations
Links
Total cost
No data

Participants (13)

Partners (2)

OSZAR »